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Electromagnetic induction in a fully 3-D anisotropic earth

Chester J. Weiss∗ and Gregory A. Newman∗

ABSTRACT

The bulk electrical anisotropy of sedimentary forma-
tions is a macroscopic phenomenon which can result
from the presence of porosity variations, laminated shaly
sands, and water saturation. Accounting for its effect
on induction log responses is an ongoing research prob-
lem for the well-logging community since these types of
sedimentary structures have long been correlated with
productive hydrocarbon reservoirs such as the Jurassic
Norphlet Sandstone and Permian Rotliegendes Sand-
stone. Presented here is a staggered-grid finite-difference

method for simulating electromagnetic (EM) induction
in a fully 3-D anisotropic medium. The electrical con-
ductivity of the formation is represented as a full 3× 3
tensor whose elements can vary arbitrarily with position
throughout the formation. To demonstrate the validity
of this approach, finite-difference results are compared
against analytic and quasi-analytic solutions for tractable
1-D and 3-D model geometries. As a final example,
we simulate 2C–40 induction tool responses in a cross-
bedded aeolian sandstone to illustrate the magnitude
of the challenge faced by interpreters when electrical
anisotropy is neglected.

INTRODUCTION

Detection of the electrical anisotropy of geologic forma-
tions is a problem that has attracted the attention of geophysi-
cists for nearly 70 years (see Maillet and Doll, 1932; Kunz and
Moran, 1958). The motivation has varied greatly, ranging from
groundwater investigation (Christensen, 2000) to hydrocar-
bon exploration (Moran and Gianzero, 1979; Anderson et al.,
1998; Kriegshäuser et al., 2000) to regional-scale lithospheric
mapping (Weidelt, 1999; Everett and Constable, 1999). Some
materials, such as single crystal olivine, exhibit an inherent
electrical anisotropy (Constable et al., 1992). Other materials,
such as clastic sedimentary reservoir rock, exhibit an electrical
anisotropy that is a macroscopic effect as a result of small-scale
petrophysical variations (see Anderson et al., 1994).

The petrophysical origins of macroscopic electrical
anisotropy in hydrocarbon reservoirs can be generally classi-
fied into three categories. The first of these is anisotropy from
variations in water saturation. For example, in crossbedded
sandstones (Figure 1), the variations in grain size and pore-
space geometry result in a graded water saturation profile
across strata within a stratigraphic set. The variable electrical
conductivity contrast between the grains and the pore space
result in a macroscopic electrical anisotropy (Klein et al. 1997)
in which the conductivity in the direction perpendicular to the
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set is less than the conductivity in the plane of the set. The
second mechanism arises from thin interbeds of sediments
with different electrical properties. Among others who have
investigated this mechanism, Klein et al. (1997) show that the
high-conductivity contrast between shales and sands results
in a pronounced anisotropy for shaly sand sequences. Last,
porosity variations have recently been identified as a potential
source of electrical anisotropy in uniformly saturated water
sands (Schön et al., 2000).

The presence of electrical anisotropy has long been recog-
nized as a potentially significant source of error in traditional
induction log analysis (e.g., Klein, 1993). A critical compo-
nent in understanding this problem is the ability to accu-
rately predict the behavior of induced EM fields in anisotropic
media. To this end, we have developed a numerical algo-
rithm that computes the electric and magnetic fields resulting
from an inductive source embedded in a fully 3-D general-
ized anisotropic medium. The generalized anisotropy of the
medium is described by a symmetric 3× 3 anisotropy tensor. In
our algorithm, we use an edge-centered, staggered-grid, finite-
difference solution to Maxwell’s equations in the quasi-static
limit. One benefit from this modeling algorithm for the log an-
alyst is the ability to better predict the response of complex
3-D formation geometries and to quantify the magnitude of
the interpretation error when anisotropy is neglected.

1104



EM Induction in a 3-D Anisotropic Earth 1105

Some attempts at 3-D modeling of anisotropic media sim-
plify the algorithmic complexity by considering a formation
conductivity described by a diagonal 3× 3 conductivity tensor.
Under this assumption, an integral equation solution (Graciet
and Shen, 1998) and a finite difference solution (Newman and
Alumbaugh, 2002) were developed to simulate induction log
response in 3-D formations with the caveat that the principal
axes of the anisotropy tensor were uniformly constrained to the
x-y-z–directions in the modeling domain. This restriction elim-
inated the possibility of modeling, for example, a crossbedded
aeolian sandstones (Figure 1).

Other formulations of the generalized 3-D anisotropy prob-
lem include those of Davydycheva and Druskin (1999) and
Weidelt (1999). These, along with our study, are based on the
finite difference staggered grid where electric and magnetic
fields are sampled at different points on a Cartesian mesh.
Davydycheva and Druskin (1999) utilize a variant known as
Lebedev’s grid, where all components of the electric field are
sampled at each node of a one grid and all components of the
magnetic field are sampled at each node of a second (staggered)
grid. This avoids the spatial conductivity averaging schemes
that typically arise in finite difference methodologies, includ-
ing the one present here, but has the disadvantage that the
anisotropy problem requires a fourfold increase in computer
storage requirements when compared with a similar isotropic
problem. As an alternative, Weidelt (1999) presents a formu-
lation based upon a face-centered discretization of the govern-
ing partial differential equation (PDE), discretized using only
components of the electric field vector which are normal to and
located at the centers of cell faces. In contrast, our edge-based
approach uses only electric field components that are tangen-
tial to conductivity boundaries and are thus locally continuous
and well behaved. This difference between our formulation and
Weidelt’s (1999) results in significant differences in how elec-
trical conductivity is approximated at electric field points. Our
method is straightforward volume averaging, in contrast to the
relatively complex arrangement of arithmetic and harmonic
averages proposed by Weidelt.

FIG. 1. Crossbedded aeolian deposits in the Jurassic Navajo
Sandstone from Zion National Park, Utah. Macroscopic elec-
trical anisotropy in this formation results from small-scale vari-
ations in grain size and pore space (from depositional kinemat-
ics), which also give rise to the differential weathering shown
here. This formation is analogous to the Permian Rotliegendes
and Jurassic Norphlet Sandstones, classic reservoirs of the
North Sea and the Gulf of Mexico, respectively. Photo cour-
tesy of Duncan Huron, Duke University.

The paper is organized as follows. We begin by deriving the
governing PDE which describes low-frequency electromag-
netic (EM) induction in anisotropic media. Next, we introduce
the finite difference method for staggered grids used in
solving the governing PDE. Incorporating a fully generalized
anisotropy tensor into the finite difference method is discussed
in the text; however, a detailed presentation of the finite dif-
ference system of equations is deferred to the Appendix.
In closing the discussion of the finite difference method, we
briefly comment on the quasi-minimal residual method to
solve the finite difference linear system of equations. Last,
we present the results of several numerical experiments. The
first set of results illustrates the agreement between the finite
difference, integral-equation, and quasi-analytic solutions for
1-D and 3-D problems. The last set of computations illustrates
the magnitude of the effect of anisotropy on the response of a
2C–40 induction logging instrument in a fully 3-D crossbedded
formation.

METHODOLOGY

The governing equations for EM induction are Faraday’s law,

∇ ×E = −iωB, (1)

which relates the electric field E to magnetic induction B, and
Ampere’s law,

∇ ×H = Ji + Js + iωD, (2)

which relates the magnetic field H to the induced and source
current densities (Ji and Js) and displacement fields D. An
exp(iωt) time dependence is implied, where ω is angular fre-
quency.

The induction and magnetic fields are related by the con-
stitutive relationship B=µH, where µ is the magnetic perme-
ability of the medium, chosen here to be that of free space,
µ=µ0= 4π × 10−7 H/m. Similarly, the displacement and elec-
tric fields are assumed to be related by D= εE, where ε is the
electric permittivity. Last, the induced current density Ji is as-
sumed to be from purely ohmic conduction in an anisotropic
medium, written as

Ji = σ̄E, (3)

where σ̄ is a symmetric 3×3 tensor. The symmetry of the con-
ductivity tensor results from neglecting the effect of Hall cur-
rents (Onsager, 1931) and is necessary for physically sensible
energy dissipation within the earth.

In formulating the EM induction problem, E can be ex-
pressed as the sum of a primary contribution E0 from Js embed-
ded in a background reference medium and a scattered contri-
bution E′ arising from conductivity and permittivity variations
which deviate from the background structure. That is,

E = E0 + E′, (4)

where the background structure is chosen to be easy to evalu-
ate. For simplicity, we choose the background electrical struc-
ture to be a uniform whole space of conductivity σ0 and per-
mittivity ε0. Formulating the problem in terms of scattered
fields is desirable because the computations are more robust
and accurate, particularly near the source and for the in-
phase fields (Newman and Alumbaugh, 2002). Thus, combining
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equations (1)–(4) yields a single, second. order PDE in terms
of the scattered electric field:

∇ ×∇ ×E′ + iωµ0(σ̄ + iωε)E′ = −iωµ0J0. (5)

The term J0 is the effective source current density for the
scattered fields,

J0 = [(σ̄ (x)− σ0I)+ iω(ε(x)− ε0)I] E0, (6)

where the spatial dependence of the conductivity and per-
mittivity is explicitly noted by the position vector x and
where I is the 3× 3 identity matrix. For the induction log-
ging calculations presented later in the Examples section,
the fields are computed in the low-frequency limit (σ Àωε).
This approximation is reasonable since the permittivity of
the formation yields a negligible effect at frequencies up to
f =ω/2π ∼1 MHz. Nonetheless, the permittivity terms are re-
tained in equations (5) and (6) for completeness and to em-
phasize that the approach taken here also applies to higher
frequency problems (see Newman and Alumbaugh, 1999).

The unknown fields E′ in equation (5) are determined by
the method of finite differences on a staggered Yee grid (Yee,
1966) where the physical domain is discretized into Cartesian
cells and the scattered electric field components (E′x , E′y, and
E′z) are defined on the edges of the cells. Coordinates of the
nodes which define cell corners are represented by indicial no-
tation as (i, j, k), representing the point x = xi x̂ + yj ŷ + zkẑ.
If necessary, magnetic fields can be computed at cell faces as
a postprocessing step based on a difference approximation to
Faraday’s law [equation (1)]. Figure 2 illustrates the relation-
ship between a cell and the computed electric field components.

Figure 2 indicates conductivity is required on cell edges be-
cause that is where the electric field is sampled. In the time
domain, Wang and Hohmann (1993) demonstrate that the av-
erage isotropic conductivity on each cell edge can be evaluated
using Ampere’s law by tracing a line integral of the magnetic
field, centered on the midpoint of the cell edge. The resulting
conductivity is a weighted sum of the conductivities of the four
adjoining cells, where the weighting is based on the area of each

FIG. 2. The staggered-grid stencil used for the finite difference
computations. Discretization of the ∇ × ∇× operator for the
x̂-component of equation (5) at point (i + 1/2, j, k) utilizes
components of E′ from each of the 13 locations indicated by
the arrows. A subset of nine E′ components, indicated by solid
arrowheads, is used for discretization of the σ̄E′ term. Also
shown is a model cell throughout which the electrical conduc-
tivity tensor remains constant.

cell that is bounded by this line integral. This spatial averaging
approach has been successfully applied to frequency-domain
modeling (Newman and Alumbaugh, 1995). For the anisotropy
problem, however, the approach is inadequate because evalu-
ating the current density term in equation (5) requires values
of not only the x̂-component of the scattered electric field at
the point (i +1/2, j, k) but also the ŷ- and ẑ-components at this
same point, since in the continuous case

x̂ · σ̄E′ = σxxE′x + σxyE′y + σxzE
′
z. (7)

The σxxE′ term is treated in a fashion similar to the
isotropic case, being approximated by a weighted average
of cell conductivities for the four cells adjacent to the point
(i + 1/2, j, k), where the averaging volume Ä is given by the
region xi < x< xi+1, yj−1/2 < y< yj+1/2 and zk−1/2 < z< zk+1/2.
Yet, because E′y and E′z are not defined in the staggered Yee
grid at these points (see Figure 2), we are motivated to seek an
estimate of their values instead. To determine such an estimate,
we begin with the following definitions:

〈σxyE′y〉 def= 1
Ä

∫
Ä

σxyE′y dV

and

〈σxzE
′
z〉 def= 1

Ä

∫
Ä

σxzE
′
z dV, (8)

where the brackets indicate spatial averaging. (A similar ex-
pression can be written for the σxxE′x term. But since the E′x
component is tangential to any possible conductivity jumps
in the regionÄ, the expression simplifies to the simple volume
weighting already described.) Because the E′y and E′z field com-
ponents can be discontinuous across the xz-plane at yj and the
xy-plane at zk, respectively, we evaluate the integrals in equa-
tion (8) piecewise over Ä. Once the integrals are evaluated,
they are substituted into equation (5) as approximate values
for the σxyE′y and σxzE′z terms. For the points (i + 1/2, j, k)
mentioned above, explicit expressions for these two integrals
are given by

〈σxyE′y〉 '
1
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i, j,k
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)}
(9)

and

〈σxzE
′
z〉 '

1
Äx

i, j,k
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1
2
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)
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The terms σ̃xy and σ̃xz are given by

σ̃xy

(
α + 1

2
, β + 1

2
, γ

)
= 1x

α

(
1
2
1

y
β

)(
1
2
1z
γ−1σ

[α,β,γ−1]
xy + 1

2
1z
γ σ

[α,β,γ ]
xy

)
(11)

and

σ̃xz

(
α + 1

2
, β, γ + 1

2

)
= 1x

α

(
1
2
1z
γ

)(
1
2
1

y
β−1σ

[α,β−1,γ ]
xz + 1

2
1

y
βσ

[α,β,γ ]
xz

)
, (12)

where the distances between neighboring cells in x, y, and zare
denoted as1x

α = xα+1− xα ,1y
β = yβ+1− yβ , and1z

γ = zγ+1− zγ ,
respectively. Consequently, the averaging volume Äx

i, j,k in
equations (9) and (10) is given by 1x

i 1
y

j− 1
2
1z

k− 1
2

, where the
superscript x on Ä indicates that the averaging volume is
centered on x-directed cell edges. Furthermore, the super-
script [α, β, γ ] on σxy and σxz indicates that the conductivity
value is that of the cell defined by the region xα < x< xα+1,
yβ < y< yβ+1, and zγ < z< zγ+1. To complete the discretization
of equation (5), the remaining current density terms ŷ · σ̄E′ and
ẑ · σ̄E′ can easily be derived using techniques similar to those
shown for the x̂ · σ̄E′ term.

Inspection of equations (9) and (10) suggests this formu-
lation may be interpreted as a variant of the face-centered
approach of Weidelt (1999) since, for example, the term
1
2 (E′y(i, j − 1/2, k) + E′y(i + 1, j − 1/2, k)) is approximately
equal to E′y(i + 1/2, j − 1/2, k), an electric field component
centered at a finite difference cell face but tangent to that
cell face. The formulation, however, remains edge centered
because equation (5) is discretized only in terms of electric
field components located along the midpoints of cell edges
and tangent to those edges. A further distinction between the
face-centered approach and the interpretation posed above
is that the face-centered approach uses electric field compo-
nents normal to the cell face. In contrast to equations (11)
and (12), the face-centered approach leads to a cumber-
some arrangement of harmonic and arithmetic averages to
arrive at a reasonable approximation to the current density
term in equation (5). The differences in algorithmic com-
plexity can be traced, in part, to the fact the edge-centered
approach uses electric field components at locations within
the finite difference mesh, where they are generally well de-
fined and continuous, whereas the face-centered approach
does not.

For brevity, explicit formulas for the system of equations
arising from the finite difference discretization of equation (5)
are contained in the Appendix. There, we find the vector of
unknown scattered electric field components y is related to the
the vector b of volume-scaled source terms J0 by the linear
system of equations

Ay= b, (13)

where A is a complex symmetric coefficient matrix. It is derived
from scaling equations (A-1)–(A-3) and applying a homoge-
neous Dirichlet condition to scattered electric field compo-
nents on the outermost boundary of the finite-difference mesh.
This system is solved efficiently by the quasi-minimal resid-

ual (QMR) iterative method for complex symmetric matrices
(Freund, 1992). Iterative matrix solvers are available for a sym-
metric complex matrices (e.g., Freund, 1993), but they require
twice as many matrix–vector products per iterative step as their
symmetric counterpart. Because much of the computational
cost for each QMR iterate is generated by the matrix–vector
product, the straightforward symmetrization procedure pro-
duced by scaling can significantly minimize the time required
to obtain a solution. We also implement a Jacobi preconditioner
to further reduce the computational time and to improve the
stability of the convergence sequence. Future work in this area
includes implementation of the low induction number (LIN)
preconditioner (Newman and Alumbaugh, 2001), which can
reduce computational time by as much as a factor of 10 for
isotropic media.

EXAMPLES

As a way to simplify the construction of a geologically sen-
sible conductivity model, we choose to describe the electrical
conductivity tensor in terms of values in a principal axes refer-
ence frame and then describe the reference frame orientation
via Euler angles. In layered sedimentary formations, for exam-
ple, the tensor is described compactly as σ̄ = diag(σ‖, σ‖, σ⊥),
where σ‖ is the conductivity in the bed-parallel direction and
σ⊥ is the conductivity perpendicular to the bedding planes.
The conductivity tensor is transformed from the position-
dependent principal axes reference frame to the x, y, and z
axes by multiplication with a rotation matrix R,

σ̄ =RT diag(σ‖, σ‖, σ⊥)R, (14)

where T denotes the transpose operator. The elements of R
are the direction cosines between the principal axes and the
x-y-z reference frame. When the conductivity in two of the
three principal directions is equal, each of the six direction
cosines is uniquely expressed in terms of only two Euler an-
gles corresponding to the strike φ and dip θ of the laminations
(Figure 3). This brings the total number of model parameters
for each model cell in Figure 2 to four: σ⊥, σ‖, θ , and φ. The

FIG. 3. Geometric relationship between the model refer-
ence frame (x, y, z) and the principal axes reference frame
(x′, y′, z′). The plane labeled S intersects the origin and is per-
pendicular to the z axis. The plane labeled S′, representing the
bedding planes, intersects the origin and is perpendicular to
the z′ axis. Angles φ and θ represent the strike and dip of the
plane S′ with respect to the plane S. For the particular rotations
shown in the figure, φ < 0 by convention.
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rotation matrix then takes the form

RT =
 cos θ cosφ −sinφ sin θ cosφ

cos θ sinφ cosφ sin θ sinφ

−sin θ 0 cos θ

 . (15)

Note that the orientation of the principal axes, and therefore
the values within the rotation matrix in equations (14) and
(15), can vary as a function of position within the conducting
formation.

To demonstrate the validity of the finite difference scheme,
we first present results of an internal consistency check and then
additional results from comparisons with previously devel-
oped quasi-analytic solutions. The internal consistency check
is based upon the computation of magnetic fields form a mag-
netic dipole source oriented 45◦ with respect to the principal
axes of a uniform whole space (Figure 4). One solution was
obtained when the principal axes were aligned with the x-y-z
reference frame and the source was tilted 45◦. The other was ob-
tained by tilting the principal axes and aligning the source in the
z-direction. For these and all models that follow, the back-
ground conductivity model is taken as a uniform isotropic
whole space of conductivity σ‖. While the effect of the bore-
hole conductivity was not included in this model, the borehole–
axial magnetic fields were computed for a sequence of source–
receiver offsets and showed favorable comparison (Figure 5).
Results for the first of these models, where the source was
tilted, were generated by superposition of the fields form an
x-directed source and fields from a z-directed one. Thus, this
comparison is a more stringent test than it may at first appear,
since numerical error is compounded by summing the fields for
the x and z sources; yet the agreement between the two models
is quite acceptable.

The first check of finite difference algorithm with an inde-
pendently derived solution computes the borehole effects on
the same coaxial transmitter–receiver array examined by the
internal consistency check discussed above (Figure 6). Com-
paring the finite difference with a 3-D integral equation solu-
tion (Avdeev et al., 2002) demonstrates favorable agreement
(Figure 7), especially for imaginary fields from which apparent
conductivity values can derived (Moran and Kunz, 1962). The

FIG. 4. Schematic representation of two models constructed
for an internal consistency check of the finite difference solu-
tions. Shown are the receiver (Rx) coil spacing, finite difference
reference frame, and formation conductivity tensor for each of
the two models. The conductivity tensor of the formation is
given by equation (12), where σ⊥ = 0.1 S/m and σ‖ = 1.0 S/m.
The transmitter (Tx) frequency is 100 kHz.

origin of the slight difference (only a few percent) between the
real component of the fields, however, is unclear. Also shown
is the finite difference solution in the absence of the conducting
borehole, verifying the well-established fact that the borehole
effect decreases with increased source–receiver offsets.

FIG. 5. Axial component of the finite difference-computed
magnetic field from evaluating the models shown in Figure 4.
The quantity plotted is the difference between the total field
and the field attributable to an equivalent source located in a
vacuum.

FIG. 6. Schematic of a deviated borehole in an anisotropic
formation. The 45◦ deviation is constrained to the xz-plane.
The transmitter (Tx) and receiver (Rx) arrays are coaxial
loops centered on the borehole axis, and each separated
by 0.2 m. Borehole conductivity is σb= 10 S/m. Anisotropic
formation conductivities are σxx= σyy= 1.0 S/m and σzz=
0.25 S/m.
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The second check of the finite difference algorithm with an
independently derived solution is based upon computing syn-
thetic induction logs for a 2C–40 sonde (one receiver coil coax-
ial with a 20-kHz transmitting coil, offset by 1.016 m) travers-
ing the contact between an isotropic upper half-space and an
anisotropic lower half-space. Within Figures 8a–c are results for
three different conductivity models, comparing the finite dif-
ference solution at three different discretizations with that of
Anderson et al. (1998), which is a quasi-analytic solution. The
models differ from one another in the amount of dip within the
lower half-space: 0◦, 60◦, and 90◦. Clearly, as the discretization
is made finer, the finite difference solutions converge toward
quasi-analytic solutions.

Three different finite difference meshes were examined to
test the convergence of the finite difference solution to the
Anderson et al. (1998) solution. The physical domain of the
model space was a 15-m cube centered on the bed contact.
Node spacing in the vertical direction was geometrically dis-
tributed, allowing for small values near the bed contact, with a
10% increase in successive node intervals as a function of dis-
tance from the contact. Lateral node spacing was kept uniform.
As expected, the finite difference solution converges to the
Anderson et al. (1998) solution as the number of mesh points is
increased, resulting in acceptable agreement for modest-sized
finite difference meshes. For the nine different finite difference
curves shown in Figures 8a–c, the time required to compute one
logging point on a 500-MHz DS-20 Alpha workstation ranges
from ∼23 to ∼1300 s (Table 1), depending generally on the
mesh size and the dip of anisotropy in the lower half-space.

As an example of an application of our finite difference
anisotropy modeling code, we consider the case of a bore-
hole induction tool in a crossbedded sandstone unit. Aeolian-
deposited crossbedded sands have long been identified as can-
didate reservoir rocks (e.g., the Jurassic Norphlet Sandstone

FIG. 7. Comparison of finite difference and integral equation
solutions for a magnetic field along the axis of a 45◦ dipping
borehole resulting from an axially aligned 160-kHz magnetic
dipole. The quantity plotted is the difference between the total
field and the field form equivalent source located in a vacuum.

and Permian Rotliegendes Sandstone) and remain targets for
hydrocarbon exploration (Berg, 1986). Our modeling results
simulate the repose of a 2C–40 borehole induction tool cross-
ing a bed boundary in a conductive sandstone and demonstrate
the effects of electrical anisotropy on the apparent conductivity
curves inferred from this instrument.

Two classes of sedimentary structures were evaluated with
the modeling software: symmetrically dipping herringbone
crossbeds and asymmetrically dipping crossbeds. Figure 9 illus-
trates the geometric configuration for the symmetrically dip-
ping case where the borehole axis intersects the bed boundary
at 90◦. This borehole configuration is not a limitation of the
modeling software. Rather, it is a decision intended to isolate
the effects of the formation anisotropy from dipping borehole
effects. For each of the models, we set the conductivity values
of the sand unit as σ⊥ = 0.1 S/m and σ‖ = 1.0 S/m. The high-
conductivity ratio of 1:10 is consistent with that seen in clean
saturated sands (Klein et al., 1997). Our finite difference so-
lution can incorporate the effects of the borehole in the tool
response (see Figures 6 and 7). However, to further isolate the
effects of formation anisotropy, the conductivity of the bore-
hole and drilling mud were not included in the simulations.

Shown in Figures 10 and 11 are the simulated apparent resis-
tivity curves as the 2C–40 tool traverses a bed boundary within
the sand unit. Owing to the high conductivity of the formation,
the apparent resistivity curves were skin effect boosted accord-
ing to standard industry practice. Simply stated, the process
incorporates higher-order terms into the approximately linear
mapping between apparent conductivity and receiver signal
strength (Moran and Kunz, 1962). Furthermore, in the limit
of large values for the anisotropy ratio λ2= σ‖/σ⊥, the well-
known formula for apparent conductivity σa given by Moran
and Gianzero (1979),

σa= σ⊥λ
√
λ2 cos2 θ + sin2 θ, (16)

can be simplified to read σa ' σ‖ cos θ . If the dip of the for-
mation with respect to the borehole axis is known, perhaps
through conventional dipmeter data, then an estimate of σ‖
is easily obtained with a coaxial induction sonde if it is rea-
sonable to assume that λ2 is large. For the examples shown in
Figures 10 and 11, λ2 = 10. It is clear that away from the effects
of the bed boundary at z= 0, the value of σa/ cos θ for various
dip angles θ is close to 1.0 S/m, the actual value of σ‖.

CONCLUSIONS

When combined with a physically tenable petrophysical
model, 3-D induction modeling capabilities have the poten-
tial to reduce the uncertainty in induction log interpretation.
Clearly, the characterization of reservoir properties with induc-
tion logs cannot be improved if either the constitutive relation-
ship between petrophysical parameters is poorly understood
or if the induction modeling software cannot simulate relevant
geologic structures. Contributing to the latter effort serves as
the motivation for our study.

For example, the what-if scenarios presented for aeolian
sands illustrate the complexity that electrical anisotropy can
introduce in the induction log response curves. The anoma-
lous behavior at the bed boundary is entirely the result of a
change in the orientation of the principal axes, not a change
in the conductivity values. An unsuspecting log analyst could
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FIG. 8. Comparisons of the 2C–40 induction sonde responses
computed analytically (solid lines) and by the finite differ-
ence method (symbols) for a formation consisting of a 0.5-S/m
isotropic upper half-space in contact with a dipping anisotropic
lower half-space with conductivities σ⊥ = 0.1 S/m and σ‖ =
2.0 S/m. The induction sonde traverses a path perpendicular
to the contact between the two half-spaces, which is located at
0.0 m on the vertical scale. Solutions from three different finite
difference meshes are shown: triangles (30 × 30 × 30 nodes),
squares (38× 38× 30), and circles (59× 59× 59).
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Table 1. Summary of model parameters and quasi-minimal residual (QMR) performance for the synthetic induction logs shown
in Figure 8. Times, iteration counts, and rates are average values to compute one logging point for each of the models evaluated.
Model size is indicated by the number of finite difference mesh nodes Nx, Ny, and Nz in the x-, y-, and z-directions, respectively.
Imposing the Dirichlet boundary condition on tangential E′ results in a linear system with 3NxNyNz−5(NxNy +NxNz +NyNz)+
8(Nx +Ny +Nz)−12 unknowns. The QMR iterative sequence terminated at a normalized residual of ‖Ayi−b‖2/‖b‖2 = 4 × 10−7.

QMR performance

Dip (◦) Nx × Ny × Nz Unknowns Iterations Time (s) Time/it. (s)

0 30 × 30 × 30 68 208 316 22.6 0.0709
0 38 × 38 × 30 112 176 720 105 0.145
0 59 × 59 × 59 565 326 625 492 0.787

60 30 × 30 × 30 68 208 548 46.6 0.0851
60 38 × 38 × 30 112 176 997 142 0.142
60 59 × 59 × 59 565 326 1164 913 0.781
90 30 × 30 × 30 68 208 530 44.2 0.0833
90 38 × 38 × 30 112 176 940 134 0.143
90 59 × 59 × 59 565 326 1755 1260 0.732

FIG. 9. Photograph of a crossbedded sandstone with symmetric
laminations dipping at an angle θ with respect to the bed bound-
ary. Also shown is the orientation (normal to the bed boundary)
of the borehole axis considered in the numerical simulations.
Photo courtesy of Duncan Huron, Duke University.

reasonably argue that the anomaly represents a separate litho-
logic unit. Furthermore, our results concur with those of Moran
and Gianzero (1979), showing that inadequate knowledge of
formation dip could lead to an anomalous baseline shift in the
resistivity value, which could lead to mischaracterization of en-
tire bed sets (Figures 10 and 11).

In summary, our algorithm for modeling EM induction in
an anisotropic medium represents a technical advance in the
ability to accurately simulate the effects of geologic structures
on induction tool response. It uses the finite difference method
to arrive at a complex symmetric system of linear equations
which are solved efficiently for the scattered electric fields by
fast Krylov subspace methods. The work differs from other 3-D
modeling efforts in the details of the field discretization and
the method for computing volume-averaged electrical prop-
erties. It offers the advantages that volume averaging is rel-
atively straightforward and the computational burden of the
anisotropic problem is not significantly greater than that of a
similar isotropic problem.
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APPENDIX

FINITE-DIFFERENCE EQUATIONS

Following Newman and Alumbaugh (1995), a 13-point
centered finite-difference stencil (Figure 2) is used to ap-
proximate the curl–curl operator in equation (5). Com-
bining this with the conductivity averaging scheme de-

scribed in this paper and assuming negligible displacement
current effects, a set of linear equations for the x-, y-,
and z-directed source terms in equation (5) are expressed
as[
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where σ̃xy and σ̃xz are already defined in equations (11)
and (12), respectively. As noted in Newman and Alumbaugh
(1995), multiplication of equation (A-1) by the volume scaling
terms Äx

i, j,k, equation (A-2) by Äy
i, j,k, and equation (A-3) by

Äz
i, j,k results in a symmetric coefficient matrix for the isotropic

case. It is straightforward, although somewhat tedious, to
demonstrate that this assertion also holds for the anisotropic
case presented here.


